Abstract
In this paper, we investigate the difference between word and sense similarity measures and present means to convert a state-of-the-art word similarity measure into a sense similarity measure. In order to evaluate the new measure, we create a special sense similarity dataset and re-rate an existing word similarity dataset using two different sense inventories from WordNet and Wikipedia. We discover that word-level measures were not able to differentiate between different senses of one word, while sense-level measures actually increase correlation when shifting to sense similarities. Sense-level similarity measures improve when evaluated with a re-rated sense-aware gold standard, while correlation with word-level similarity measures decreases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.