Abstract

The metabolic program is altered during macrophage activation and influences macrophage polarization. Glutaminolysis promotes accumulation of α-ketoglutarate (αKG), leading to Jumonji domain-containing protein D3 (Jmjd3)-dependent demethylation at H3K27me3 during M2 polarization of macrophages. However, it remains unclear how αKG accumulation is regulated during M2 polarization of macrophages. This study shows that SENP1-Sirt3 signaling controls glutaminolysis, leading to αKG accumulation during IL-4-stimulated M2 polarization. Activation of the SENP1-Sirt3 axis augments M2 macrophage polarization through the accumulation of αKG via glutaminolysis. We also identify glutamate dehydrogenase 1 (GLUD1) as an acetylated protein in mitochondria. The SENP1-Sirt3 axis deacetylates GLUD1 and increases its activity in glutaminolysis to promote αKG production, leading to M2 polarization of macrophages. Therefore, SENP1-Sirt3 signaling plays a critical role in αKG accumulation via glutaminolysis to promote M2 polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.