Abstract

The g_{9/2} shell of identical particles is the first one for which one can have seniority-mixing effects. We consider three interactions: a delta interaction that conserves seniority, a quadrupole-quadrupole (QQ) interaction that does not, and a third one consisting of two-body matrix elements taken from experiment (98Cd) that also leads to some seniority mixing. We deal with proton holes relative to a Z=50,N=50 core. One surprising result is that, for a four-particle system with total angular momentum I=4, there is one state with seniority v=4 that is an eigenstate of any two-body interaction--seniority conserving or not. The other two states are mixtures of v=2 and v=4 for the seniority-mixing interactions. The same thing holds true for I=6. Another point of interest is that the splittings E(I_{max})-E(I_{min}) are the same for three and five particles with a seniority conserving interaction (a well known result), but are equal and opposite for a QQ interaction. We also fit the spectra with a combination of the delta and QQ interactions. The Z=40,N=40 core plus g_{9/2} neutrons (Zr isotopes) is also considered, although it is recognized that the core is deformed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call