Abstract

Identifying enhancers is a critical task in bioinformatics due to their primary role in regulating gene expression. For this reason, various computational algorithms devoted to enhancer identification have been put forward over the years. More features are extracted from the single DNA sequences to boost the performance. Nevertheless, DNA structural information is neglected, which is an essential factor affecting the binding preferences of transcription factors to regulatory elements like enhancers. Here, we propose SENIES, a DNA shape enhanced deep learning predictor, to identify enhancers and their strength. The predictor consists of two layers where the first layer is for enhancer and non-enhancer identification, and the second layer is for predicting the strength of enhancers. Apart from two common sequence-derived features (i.e., one-hot and k-mer), DNA shape is introduced to describe the 3D structures of DNA sequences. Performance comparison with state-of-the-art methods conducted on public datasets demonstrates the effectiveness and robustness of our predictor. The code implementation of SENIES is publicly available at https://github.com/hlju-liye/SENIES.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.