Abstract

Senescence has been demonstrated to either inhibit or promote tumorigenesis. Resolving this paradox requires spatial mapping and functional characterization of senescent cells in the native tumor niche. Here, we identified senescent p16 Ink4a + cancer-associated fibroblasts with a secretory phenotype that promotes fatty acid uptake and utilization by aggressive lung adenocarcinoma driven by Kras and p53 mutations. Furthermore, rewiring of lung cancer metabolism by p16 Ink4a + cancer-associated fibroblasts also altered tumor cell identity to a highly plastic/dedifferentiated state associated with progression in murine and human LUAD. Our ex vivo senolytic screening platform identified XL888, a HSP90 inhibitor, that cleared p16 Ink4a + cancer-associated fibroblasts in vivo. XL888 administration after establishment of advanced lung adenocarcinoma significantly reduced tumor burden concurrent with the loss of plastic tumor cells. Our study identified a druggable component of the tumor stroma that fulfills the metabolic requirement of tumor cells to acquire a more aggressive phenotype.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.