Abstract

Ramonda sp. (Gesneriaceae) is an endemic and relic plant in a very small group of poikilohydric angiosperms that are able to survive in an almost completely dehydrated state. Senescence- and drought-related changes in the activity of peroxidase (POD; EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11), and superoxide dismutase (SOD; EC 1.15.1.1) were determined in leaves of different age and relative water content. The results indicate that different POD isoforms were stimulated during senescence and dehydration. Two of the soluble POD isoforms were anionic with pI 4.5, and two were cationic with pI 9.3 and 9.0. The activity of ascorbate peroxidase remained unchanged either by drought or senescence. For the first time, SOD isoforms have now been determined in this resurrection plant. Several SOD isoforms, all of the Mn type, were found to be anionic with pI 4 and a few others had pI from 5 to 6, while one band of FeSOD with a lower molecular weight was neutral. Rehydration brought about a remarkable decrease over the first hour in the activity of all the antioxidant enzymes examined but activity recovered 1 d after rehydration. The results confirmed that dehydration and senescence caused disturbance in the redox homeostasis of Ramonda leaves, while inducing different POD isoforms. A physiological role of peroxidase reaction with hydroxycinnamic acids in conservation and protection of cellular constituents of desiccated Ramonda leaves is suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.