Abstract

Seneca Valley Virus (SVV) is a newly emerged virus belonging to the family Picornaviridae. Basic knowledge of the immunological response to SVV is limited. To date, one study has demonstrated that SVV 3Cpro mediates the cleavage of host MAVS, TRIF, and TANK at specific sites and consequently escapes the host's antiviral innate immunity. In this study, we show that SVV 3Cpro reduces IRF3 and IRF7 protein expression level and phosphorylation. SVV infection also reduces expression of IRF3 and IRF7 protein. The degradation of IRF3 and IRF7 is dependent on the 3Cpro protease activity. We also identify interactions between 3Cpro and IRF3 and IRF7 in PK-15 cells. A detailed analysis revealed that the degradation of IRF3 and IRF7 blocks the transcription of IFN-β, IFN-α1, IFN-α4, and ISG54. Together, our results demonstrate a novel mechanism developed by SVV 3Cpro to allow the virus to escape the host's intrinsic innate immune system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.