Abstract
This study addresses the challenge of leveraging free-text descriptions in Electronic Health Records (EHR) for clinical research and healthcare improvement. Despite the potential of this data, its direct interpretation by computers is limited. Semantic annotation emerges as a method to make EHR free text machine-interpretable but struggles with specific domain ontologies and faces heightened difficulties in psychiatry. To tackle these challenges, this study proposes a system based on unsupervised learning techniques to extract entities and their relationships, aligning them with a domain ontology. The effectiveness of this system has been validated within PsyCARE project by analyzing 60 patient discharge summaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.