Abstract

In this paper, we continue the study of semitotal domination in graphs in [Discrete Math. 324, 13–18 (2014)]. A set \({S}\) of vertices in \({G}\) is a semitotal dominating set of \({G}\) if it is a dominating set of \({G}\) and every vertex in \({S}\) is within distance 2 of another vertex of \({S}\). The semitotal domination number, \({{\gamma_{t2}}(G)}\), is the minimum cardinality of a semitotal dominating set of \({G}\). This domination parameter is squeezed between arguably the two most important domination parameters; namely, the domination number, \({\gamma (G)}\), and the total domination number, \({{\gamma_{t}}(G)}\). We observe that \({\gamma (G) \leq {\gamma_{t2}}(G) \leq {\gamma_{t}}(G)}\). A claw-free graph is a graph that does not contain \({K_{1, \, 3}}\) as an induced subgraph. We prove that if \({G}\) is a connected, claw-free, cubic graph of order \({n \geq 10}\), then \({{\gamma_{t2}}(G) \leq 4n/11}\).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.