Abstract
A new series of analogues of the calabash curare alkaloid toxiferine I was prepared and pharmacologically evaluated at α7 and muscle-type nAChRs and the allosteric site of muscarinic M2 receptors. The new ligands differ from toxiferine I by the absence of one (2a–c) or two (3a–c) hydroxy groups, saturation of the exocyclic double bonds, and various N-substituents (methyl, allyl, 4-nitrobenzyl). At the muscle-type nAChRs, most ligands showed similar binding to the muscle relaxant alcuronium, indicating neuromuscular blocking activity, with the nonhydroxylated analogues 3b (Ki = 75 nM) and 3c (Ki = 82 nM) displaying the highest affinity. At α7 nAChRs, all ligands showed a moderate to low antagonistic effect, suggesting that the alcoholic functions are not necessary for antagonistic action. Compound 3c exerted the highest preference for the muscle-type nAChRs (Ki = 82 nM) over α7 (IC50 = 21 μM). As for the allosteric site of M2 receptors, binding was found to be dependent on N-substitution rather than on the nature of the side chains. The most potent ligands were the N-allyl analogues 2b and 3b (EC0.5,diss = 12 and 36 nM) and the N-nitrobenzyl derivatives 2c and 3c (EC0.5,diss = 32 and 49 nM). The present findings should help delineate the structural requirements for activity at different types of AChRs and for the design of novel selective ligands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.