Abstract
The cell wall is an elaborate framework of peptidoglycan that serves to protect the bacterium against osmotic challenge. This exoskeleton is composed of repeating saccharides covalently cross-linked by peptide stems. The general structure of the cell wall is widely conserved across diverse Gram-negative bacteria. To begin to explore the biological consequence of introducing non-canonical cross-links into the cell wall of Escherichia coli, we generated a bacterium where up to 31% of the cell-wall cross-links are formed by a non-enzymatic reaction between a sulfonyl fluoride and an amino group. Bacteria with these non-canonical cell-wall cross-links achieve a high optical density in culture, divide and elongate successfully, and display no loss of outer membrane integrity. This work represents a first step in the design of bacteria with non-canonical "synthetic" cell walls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.