Abstract

Obovatol, a novel lignan isolated from the leaf and stem bark of Magnolia obovata Thunb exhibits many important biological activities. To discover natural-product-based potential fungicides with novel structural skeletons, a series of Mannich base derivatives were prepared by the C-4-aminomethylated modification of obovatol and all synthesized compounds were evaluated for antifungal activities in vitro against several phytopathogenic fungi using the spore germination method and the mycelium growth rate method. Furthermore, their structures were also characterized by 1H NMR, 13C NMR, and HR-MS, and compound 2k was further analyzed by single-crystal X-ray diffraction. Among all of the derivatives, compounds 2b (IC50=28.68µg/mL) and 2g (IC50=16.90µg/mL) demonstrated greater inhibition of Botrytis cinerea spore germination than two positive controls, hymexazol and difenoconazole. Compounds 2c, 2f, and 2g displayed potent mycelial growth inhibition of B. cinerea with an average inhibition rate (AIR) of >90% at a concentration of 100µg/mL. Additionally, the structure-activity relationships (SARs) suggested that the introduction of a diethylamino, pyrrolyl, 1-methyl-piperazinyl or 1-ethyl-piperazinyl groups on the C-4 position of obovatol may be more likely to yield potential antifungal compounds than the introduction of 4-phenyl-piperazinyl or 4-phenyl-piperidinyl groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.