Abstract

Several network science applications involve nodal processes with dynamics dependent on the underlying graph topology that can possibly jump over discrete states. The connectivity in dynamic brain networks for instance, switches among candidate topologies, each corresponding to a different emotional state. In this context, the present work relies on limited nodal observations to perform semi-supervised tracking of dynamic processes over switching graphs. To this end, leveraging what is termed interacting multi-graph model (IMGM), a scalable online Bayesian approach is developed to track the active graph topology and dynamic nodal process. Numerical tests with synthetic and real datasets demonstrate the merits of the novel approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.