Abstract
Conventional speaker localization algorithms, based merely on the received microphone signals, are often sensitive to adverse conditions, such as: high reverberation or low signal-to-noise ratio (SNR). In some scenarios, e.g., in meeting rooms or cars, it can be assumed that the source position is confined to a predefined area, and the acoustic parameters of the environment are approximately fixed. Such scenarios give rise to the assumption that the acoustic samples from the region of interest have a distinct geometrical structure. In this paper, we show that the high-dimensional acoustic samples indeed lie on a low-dimensional manifold and can be embedded into a low-dimensional space. Motivated by this result, we propose a semi-supervised source localization algorithm based on two-microphone measurements, which recovers the inverse mapping between the acoustic samples and their corresponding locations. The idea is to use an optimization framework based on manifold regularization, that involves smoothness constraints of possible solutions with respect to the manifold. The proposed algorithm, termed manifold regularization for localization, is adapted while new unlabelled measurements (from unknown source locations) are accumulated during runtime. Experimental results show superior localization performance when compared with a recently presented algorithm based on a manifold learning approach and with the generalized cross-correlation algorithm as a baseline. The algorithm achieves $2^\circ$ accuracy in typical noisy and reverberant environments (reverberation time between $200$ and $800$ ms and SNR between $5$ and $20$ dB).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.