Abstract
Feature extraction is the key problem of face recognition. In this paper, we propose a new feature extraction method, called semi-supervised local mean-based discriminant analysis (SLMNND). SLMNND aims to find a set of projection vectors which respect the discriminant structure inferred from the labeled data points, as well as the intrinsic geometrical structure inferred from both labeled and unlabeled data points. Experiments on the famous ORL and AR face image databases demonstrate the effectiveness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.