Abstract

Ensemble learning has many successful applications because of its effectiveness in boosting the predictive performance of classification models. In this article, we propose a semisupervised multiple choice learning (SemiMCL) approach to jointly train a network ensemble on partially labeled data. Our model mainly focuses on improving a labeled data assignment among the constituent networks and exploiting unlabeled data to capture domain-specific information, such that semisupervised classification can be effectively facilitated. Different from conventional multiple choice learning models, the constituent networks learn multiple tasks in the training process. Specifically, an auxiliary reconstruction task is included to learn domain-specific representation. For the purpose of performing implicit labeling on reliable unlabeled samples, we adopt a negative l1 -norm regularization when minimizing the conditional entropy with respect to the posterior probability distribution. Extensive experiments on multiple real-world datasets are conducted to verify the effectiveness and superiority of the proposed SemiMCL model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.