Abstract
Recently, learning-based hashing methods which are designed to preserve the semantic information, have shown promising results for approximate nearest neighbor (ANN) search problems. However, most of these methods require a large number of labeled data which are difficult to access in many real applications. With very limited labeled data available, in this paper we propose a semi-supervised hashing method by integrating manifold embedding, feature representation and classifier learning into a joint framework. Specifically, a semi-supervised manifold embedding is explored to simultaneously optimize feature representation and classifier learning to make the learned binary codes optimal for classification. A two-stage hashing strategy is proposed to effectively address the corresponding optimization problem. At the first stage, an iterative algorithm is designed to obtain a relaxed solution. At the second stage, the hashing function is refined by introducing an orthogonal transformation to reduce the quantization error. Extensive experiments on three benchmark databases demonstrate the effectiveness of the proposed method in comparison with several state-of-the-art hashing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.