Abstract

Semi-supervised dimensional reduction methods play an important role in pattern recognition, which are likely to be more suitable for plant leaf and palmprint classification, since labeling plant leaf and palmprint often requires expensive human labor, whereas unlabeled plant leaf and palmprint is far easier to obtain at very low cost. In this paper, we attempt to utilize the unlabeled data to aid plant leaf and palmprint classification task with the limited number of the labeled plant leaf or palmprint data, and propose a semi-supervised locally discriminant projection (SSLDP) algorithm for plant leaf and palmprint classification. By making use of both labeled and unlabeled data in learning a transformation for dimensionality reduction, the proposed method can overcome the small-sample-size (SSS) problem under the situation where labeled data are scant. In SSLDP, the labeled data points, combined with the unlabeled data ones, are used to construct the within-class and between-class weight matrices incorporating the neighborhood information of the data set. The experiments on plant leaf and palmprint databases demonstrate that SSLDP is effective and feasible for plant leaf and palmprint classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.