Abstract

Fisher discriminant analysis (FDA) is a classic supervised dimensionality reduction method in statistical pattern recognition. FDA can maximize the scatter between different classes, while minimizing the scatter within each class. As it only utilizes the labeled data and ignores the unlabeled data in the analysis process of FDA, it cannot be used to solve the unsupervised learning problems. Its performance is also very poor in dealing with semi-supervised learning problems in some cases. Recently, several semi-supervised learning methods as an extension of FDA have proposed. Most of these methods solve the semi-supervised problem by using a tradeoff parameter that evaluates the ratio of the supervised and unsupervised methods. In this paper, we propose a general semi-supervised dimensionality learning idea for the partially labeled data, namely the reconstruction probability class of labeled and unlabeled data. Based on the probability class optimizes Fisher criterion function, we propose a novel Semi-Supervised Local Fisher Discriminant Analysis (S2LFDA) method. Experimental results on real-world datasets demonstrate its effectiveness compared to the existing similar correlation methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call