Abstract
In recent years, deep learning models have pushed state-of-the-art accuracies for several machine learning tasks. However, such models require a large amount of (supervised) data for training. While unlabelled data is available in abundance, manually labeling them is very costly. Active learning techniques helps in utilizing unlabelled data which may result in an improved classification model. In this research, we present an active learning algorithm which can help in increasing performance of deep learning models by using large amount of unlabelled data. A novel active learning algorithm, Triplet AL is proposed which uses a triplet network to select samples from an unlabelled data set. Previous active learning methods rely on classification model's final prediction scores as a measure of confidence for an unlabelled sample. We propose a more reliable confidence measure, termed as Top-Two-Margin which is given by the Triplet Network. The proposed algorithm shows improved performance compared to other active learning approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.