Abstract

We investigate how generative adversarial nets (GANs) can help semi-supervised learning on graphs. We first provide insights on working principles of adversarial learning over graphs and then present GraphSGAN, a novel approach to semi-supervised learning on graphs. In GraphSGAN, generator and classifier networks play a novel competitive game. At equilibrium, generator generates fake samples in low-density areas between subgraphs. In order to discriminate fake samples from the real, classifier implicitly takes the density property of subgraph into consideration. An efficient adversarial learning algorithm has been developed to improve traditional normalized graph Laplacian regularization with a theoretical guarantee. Experimental results on several different genres of datasets show that the proposed GraphSGAN significantly outperforms several state-of-the-art methods. GraphSGAN can be also trained using mini-batch, thus enjoys the scalability advantage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.