Abstract

In this study, we propose a new semi-supervised classification method for Polarimetric SAR (PolSAR) images, aiming at handling the issue that the number of train set is small. First, considering the scattering characters of PolSAR data, this method extracts multiple scattering features using target decomposition approach. Then, a semi-supervised learning model is established based on a co-training framework and Support Vector Machine (SVM). Both labeled and unlabeled data are utilized in this model to obtain high classification accuracy. Third, a recovery scheme based on the Wishart classifier is proposed to improve the classification performance. From the experiments conducted in this study, it is evident that the proposed method performs more effectively compared with other traditional methods when the number of train set is small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.