Abstract

In this paper, we adapt two existing methods to perform semi-supervised temporal clustering: Aligned Cluster Analysis (ACA), a temporal clustering algorithm, and Constrained Spectral Clustering, a semi-supervised clustering algorithm. In the first method, we add side information in the form of pair wise constraints to its objective function, and in the second, we add a temporal search to its framework. We also extend both methods by propagating the constraints throughout the whole similarity matrix. In order to validate the advantage of the proposed semi-supervised methods to temporal clustering, we evaluate them in comparison to their original versions as well as another semi-supervised temporal cluster on three temporal datasets. The results show that the proposed methods are competitive and provide good improvement over the unsupervised approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.