Abstract
ABSTRACTThis paper presents a semisupervised dimensionality reduction (DR) method based on the combination of semisupervised learning (SSL) and metric learning (ML) (CSSLML-DR) in order to overcome some existing limitations in HSIs analysis. Specifically, CSSML focuses on the difficulties of high dimensionality of hyperspectral images (HSIs) data, the insufficient number of labelled samples and inappropriate distance metric. CSSLML aims to learn a local metrics under which the similar samples are pushed as close as possible, and simultaneously, the different samples are pulled away as far as possible. CSSLML constructs two local-reweighted dynamic graphs in an iterative two-steps approach: L-step and V-step. In L-step, the local between-class and within-class graphs are updated. In V-step, the transformation matrix and the reduced space are updated. The algorithm is repeated until a stopping criterion is satisfied. Experimental results on two well-known hyperspectral image data sets demonstrate the superiority of CSSLML algorithm compared to some traditional DR methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.