Abstract

Suspended-core fibers (SCFs) are considered the best candidates for enhancing fiber nonlinearity in mid-infrared applications. Accurate modeling and optimization of its structure is a key part of the SCF structure design process. Due to the drawbacks of traditional numerical simulation methods, such as low speed and large errors, the deep learning-based inverse design of SCFs has become mainstream. However, the advantage of deep learning models over traditional optimization methods relies heavily on large-scale a priori datasets to train the models, a common bottleneck of data-driven methods. This paper presents a comprehensive deep learning model for the efficient inverse design of SCFs. A semi-supervised learning strategy is introduced to alleviate the burden of data acquisition. Taking SCF’s three key optical properties (effective mode area, nonlinear coefficient, and dispersion) as examples, we demonstrate that satisfactory computational results can be obtained based on small-scale training data. The proposed scheme can provide a new and effective platform for data-limited physical computing tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.