Abstract
Semistable subcategories were introduced in the context of Mumford’s GIT and interpreted by King in terms of representation theory of finite dimensional algebras. Ingalls and Thomas later showed that for finite dimensional algebras of Dynkin and affine type, the poset of semistable subcategories is isomorphic to the corresponding poset of noncrossing partitions. We show that semistable subcategories defined by tiling algebras, introduced by Coelho Simoes and Parsons, are in bijection with noncrossing tree partitions, introduced by the second author and McConville. Moreover, this bijection defines an isomorphism of the posets on these objects. Our work recovers that of Ingalls and Thomas in Dynkin type A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.