Abstract

The development of age-appropriate dosage forms is essential for effective pharmacotherapy, especially when long-term drug treatment is required, as in the case of latent tuberculosis infection treatment with up to 9 months of daily isoniazid (ISO). Herein, we describe the fabrication of starch-based soft dosage forms of ISO using semi-solid extrusion (SSE) 3D printing. Corn starch was used for ink preparation using ISO as model drug. The inks were characterized physicochemically and their viscoelastic properties were assessed with rheological analysis. The morphology of the printed dosage forms was visualized with scanning electron microscopy and their textural properties were evaluated using texture analysis. Dose accuracy was verified before in-vitro swelling and dissolution studies in simulated gastric fluid (SGF). Starch inks were printed with good resolution and high drug dose accuracy. The printed dosage forms had a soft texture to ease administration in paediatric patients and a highly porous microstructure facilitating water penetration and ISO diffusion in SGF, resulting in almost total drug release within 45 min. The ease of preparation and fabrication combined with the cost-effectiveness of the starting materials constitutes SSE 3D printing of starch-based soft dosage forms a viable approach for paediatric-friendly formulations in low-resource settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call