Abstract

In this article, we propose a novel feature selection method based on hybrid neural networks for emotional classification avoiding expensive computation. With the development of neural networks for machine learning tools, the Electroencephalogram (EEG)-based classification of human emotions is increasingly important in providing health-care for Edge Computing in support of multiple Internet of Things (IoT) applications. However, classifying emotions through EEG signals is very challenging due to the low temporal boundaries and non-linear nature of EEG signals. Regarding non-linearity, we propose a hierarchical Semi-skipping Layered Gated Unit (SLGU) besides Efficient Network (ENet) for feature extraction. For faster processing, we have introduced a semi-skipping layer for Gated Recurrent Units (GRU) in Recurrent Neural Networks (RNN). The entered layer automatically skips the divergent factor during network training. Preprocessed EEG signals are sent to the hybrid SLGU-ENet model for deep feature extraction. To overcome the computational cost, an optimal function reduction method called the Bag of Visualized Characteristics (BoVC) is used. The entire facility is verified against two publicly available datasets. The results show that the classification performance of the proposed model achieves superior classification precision in a short processing time compared to the state-of-the-art models. The proposed algorithm required around 1.2-5 seconds, suitable for real-time IoT applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.