Abstract

In a previous paper we introduced the concept of semiseparable functor. Here we continue our study of these functors in connection with idempotent (Cauchy) completion. To this aim, we introduce and investigate the notions of (co)reflection and bireflection up to retracts. We show that the (co)comparison functor attached to an adjunction whose associated (co)monad is separable is a coreflection (reflection) up to retracts. This fact allows us to prove that a right (left) adjoint functor is semiseparable if and only if the associated (co)monad is separable and the (co)comparison functor is a bireflection up to retracts, extending a characterization pursued by X.-W. Chen in the separable case. Finally, we provide a semi-analogue of a result obtained by P. Balmer in the framework of pre-triangulated categories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.