Abstract

In traditional justification logic, evidence terms have the syntactic form of polynomials, but they are not equipped with the corresponding algebraic structure. We present a novel semantic approach to justification logic that models evidence by a semiring. Hence justification terms can be interpreted as polynomial functions on that semiring. This provides an adequate semantics for evidence terms and clarifies the role of variables in justification logic. Moreover, the algebraic structure makes it possible to compute with evidence. Depending on the chosen semiring this can be used to model trust, probabilities, cost, etc. Last but not least the semiring approach seems promising for obtaining a realization procedure for modal fixed point logics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.