Abstract

It is shown that a vertex-transitive graph of valency p + 1 , p a prime, admitting a transitive action of a { 2 , p } -group, has a non-identity semiregular automorphism. As a consequence, it is proved that a quartic vertex-transitive graph has a non-identity semiregular automorphism, thus giving a partial affirmative answer to the conjecture that all vertex-transitive graphs have such an automorphism and, more generally, that all 2-closed transitive permutation groups contain such an element (see [D. Marušič, On vertex symmetric digraphs, Discrete Math. 36 (1981) 69–81; P.J. Cameron (Ed.), Problems from the Fifteenth British Combinatorial Conference, Discrete Math. 167/168 (1997) 605–615]).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.