Abstract

Cracking is one of the most critical defects that may occur during aluminum direct-chill (DC) casting. There are two types of cracking typical of DC casting: hot tearing and cold cracking. To study and predict such defects, currently we are using a process simulator, ALSIM. ALSIM is able to provide semi-quantitative predictions of hot tearing and cold cracking susceptibility. In this work, we performed benchmark tests using predictions of both types of cracks and experimental results of DC casting trials. The trials series resulted in billets with hot tearing as well as cold cracking. The model was also used to study the influence of several casting variables such as casting speed and inlet geometry with respect to the cracking susceptibility in the ingots. In this work, we found that the sump geometry was changed by the feeding scheme, which played an important role in hot tear occurrence. Moreover, increasing the casting speed also increased the hot tear and cold crack susceptibility. In addition, from the result of simulation, we also observed a phenomenon that supported the hypotheses of connection between hot tearing and cold cracking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call