Abstract

In this study, we examine bacterial attachment and survival on a titanium (Ti) cathode coated with various carbon nanomaterials (CNM): pristine carbon nanotubes (CNT), oxidized carbon nanotubes (O-CNT), oxidized-annealed carbon nanotubes (OA-CNT), carbon black (CB), and reduced graphene oxide (rGO). The carbon nanomaterials were dispersed in an isopropyl alcohol-Nafion solution and were then used to dip-coat a Ti substrate. Pseudomonas fluorescens was selected as the representative bacterium for environmental biofouling. Experiments in the absence of an electric potential indicate that increased nanoscale surface roughness and decreased hydrophobicity of the CNM coating decreased bacterial adhesion. The loss of bacterial viability on the noncharged CNM coatings ranged from 22% for CB to 67% for OA-CNT and was dependent on the CNM dimensions and surface chemistry. For electrochemical experiments, the total density and percentage of inactivation of the adherent bacteria were analyzed semiquantitatively as functions of electrode potential, current density, and hydrogen peroxide generation. Electrode potential and hydrogen peroxide generation were the dominant factors with regard to short-term (3-h) bacterial attachment and inactivation, respectively. Extended-time electrochemical experiments (12 h) indicated that in all cases, the density of total deposited bacteria increased almost linearly with time and that the rate of bacterial adhesion was decreased 8- to 10-fold when an electric potential was applied. In summary, this study provides a fundamental rationale for the selection of CNM as cathode coatings and electric potential to reduce microbial fouling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.