Abstract
The design and performance of a semi-preparative asymmetrical flow field-flow fractionation (SP-AF4) channel are investigated with the objective of better understanding and exploiting the relationship between channel dimensions, sample loading, and resolution. Most size-based separations of nanometer and submicrometer particles are currently limited to analytical scale quantities (<100μg). However, there is a strong need to fractionate and collect larger quantities so that fundamental properties of the more narrowly dispersed fractions can be studied using additional characterization methods and for subsequent applications. In this work, dimensions of the spacer that defines the form of SP-AF4 channels are varied and their performances are assessed with respect to sample focusing position and loading. Separations are performed in aqueous and organic carrier fluids. A critical evaluation of channel dimensions showed that increasing the channel breadth is a practical and effective route to maintaining separation resolution while increasing sample loads to milligram quantities. Good size resolution (∼1.0) is achieved for separations of 10mg of 50 and 100nm silica nanoparticles suspended in water and up to 0.6mg of ∼10 to 35nm inorganic hybrid nanoparticles suspended in tetrahydrofuran. This work represents important advances in the understanding of SP-AF4 separations and extends sample loading capacities in both aqueous and organic solvents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.