Abstract
We present here a family of posets which generalizes both partition and pointed partition posets. After a short description of these new posets, we show that they are Cohen-Macaulay, compute their Moebius numbers and their characteristic polynomials. The characteristic polynomials are obtained using a combinatorial interpretation of the incidence Hopf algebra associated to these posets. Nous introduisons ici une famille de posets qui généralise à la fois les poset de partitions et les posets de partitions pointées. Après une description rapide de ces nouveaux posets, nous montrons qu’ils sont Cohen-Macaulay et nous calculons leurs nombres de Moebius et leurs polynômes caractéristiques. Ces derniers sont obtenus grâce à une interprétation combinatoire de l’algèbre de Hopf d’incidence associée à ces posets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Discrete Mathematics & Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.