Abstract

This article extends the fusion among various statistical methods to estimate the mean and variance functions in heteroscedastic semiparametric models when the response variable comes from a two-parameter exponential family distribution. We rely on the natural connection among smoothing methods that use basis functions with penalization, mixed models and a Bayesian Markov Chain sampling simulation methodology. The significance and implications of our strategy lies in its potential to contribute to a simple and unified computational methodology that takes into account the factors that affect the variability in the responses, which in turn is important for an efficient estimation and correct inference of mean parameters without the requirement of fully parametric models. An extensive simulation study investigates the performance of the estimates. Finally, an application using the Light Detection and Ranging technique, LIDAR, data highlights the merits of our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.