Abstract

We propose a semiparametric method to estimate the average treatment effect under the assumption of unconfoundedness given observational data. Our estimation method alleviates misspecification issues of the propensity score function by estimating the single-index link function involved through Hermite polynomials. Our approach is computationally tractable and allows for moderately large dimension covariates. We provide the large sample properties of the estimator and show its validity. Also, the average treatment effect estimator achieves the parametric rate and asymptotic normality. Our extensive Monte Carlo study shows that the proposed estimator is valid in finite samples. We also provide an empirical analysis on the effect of maternal smoking on babies' birth weight and the effect of job training program on future earnings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.