Abstract
This paper concerns semiparametric regression models with additive nonparametric components and high dimensional parametric components under sparsity assumptions. To achieve simultaneous model selection for both nonparametric and parametric parts, we introduce a penalty that combines the adaptive empirical L2-norms of the nonparametric component functions and the SCAD penalty on the coefficients in the parametric part. We use the additive partial smoothing spline estimate as the initial estimate and establish its convergence rate with diverging dimensions of parametric components. Our simulation studies reveal excellent model selection performance of the proposed method. An application to an economic study on Canadian household gasoline consumption reveals interesting results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.