Abstract

We propose a family of regression models to adjust for nonrandom dropouts in the analysis of longitudinal outcomes with fully observed covariates. The approach conceptually focuses on generalized linear models with random effects. A novel formulation of a shared random effects model is presented and shown to provide a dropout selection parameter with a meaningful interpretation. The proposed semiparametric and parametric models are made part of a sensitivity analysis to delineate the range of inferences consistent with observed data. Concerns about model identifiability are addressed by fixing some model parameters to construct functional estimators that are used as the basis of a global sensitivity test for parameter contrasts. Our simulation studies demonstrate a large reduction of bias for the semiparametric model relatively to the parametric model at times where the dropout rate is high or the dropout model is misspecified. The methodology's practical utility is illustrated in a data analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.