Abstract

We consider identifiability and estimation in a generalized linear model in which the response variable and some covariates have missing values and the missing data mechanism is nonignorable and unspecified. We adopt a pseudo-likelihood approach that makes use of an instrumental variable to help identifying unknown parameters in the presence of nonignorable missing data. Explicit conditions for the identifiability of parameters are given. Some asymptotic properties of the parameter estimators based on maximizing the pseudo-likelihood are established. Explicit asymptotic covariance matrix and its estimator are also derived in some cases. For the numerical maximization of the pseudo-likelihood, we develop a two-step iteration algorithm that decomposes a nonconcave maximization problem into two problems of maximizing concave functions. Some simulation results and an application to a dataset from cotton factory workers are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.