Abstract
This paper studies semiparametric regression analysis of panel count data, which arise naturally when recurrent events are considered. Such data frequently occur in medical follow-up studies and reliability experiments, for example. To explore the nonlinear interactions between covariates, we propose a class of partially linear models with possibly varying coefficients for the mean function of the counting processes with panel count data. The functional coefficients are estimated by B-spline function approximations. The estimation procedures are based on maximum pseudo-likelihood and likelihood approaches and they are easy to implement. The asymptotic properties of the resulting estimators are established, and their finite-sample performance is assessed by Monte Carlo simulation studies. We also demonstrate the value of the proposed method by the analysis of a cancer data set, where the new modeling approach provides more comprehensive information than the usual proportional mean model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.