Abstract
In this work, we studied a two-component mixture model with stochastic dominance constraint, a model arising naturally from many genetic studies. To model the stochastic dominance, we proposed a semiparametric modelling of the log of density ratio. More specifically, when the log of the ratio of two component densities is in a linear regression form, the stochastic dominance is immediately satisfied. For the resulting semiparametric mixture model, we proposed two estimators, maximum empirical likelihood estimator (MELE) and minimum Hellinger distance estimator (MHDE), and investigated their asymptotic properties such as consistency and normality. In addition, to test the validity of the proposed semiparametric model, we developed Kolmogorov–Smirnov type tests based on the two estimators. The finite-sample performance, in terms of both efficiency and robustness, of the two estimators and the tests were examined and compared via both thorough Monte Carlo simulation studies and real data analysis.Supplementary InformationThe online version contains supplementary material available at 10.1007/s10463-022-00835-5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.