Abstract
AbstractForecasting survival risks for time-to-event data is an essential task in clinical research. Practitioners often rely on well-structured statistical models to make predictions for patient survival outcomes. The nonparametric proportional hazards model, as an extension of the Cox proportional hazards model, involves an additive nonlinear combination of covariate effects for hazards regression and may be more flexible. When there are a large number of predictors, nonparametric smoothing for different variables cannot be simultaneously optimal using the conventional fitting program. To address such a limitation and still maintain the nonparametric flavour, we present a novel model averaging method to produce model-based prediction for survival outcome and our method automatically offers optimal smoothing for individual nonparametric functional estimation. The proposed semiparametric model averaging prediction (SMAP) method basically approximates the underlying unstructured nonparametric regression function by a weighted sum of low-dimensional nonparametric submodels. The weights are obtained from maximizing the partial likelihood constructed for the aggregated model. Theoretical properties are discussed for the estimated model weights. Simulation studies are conducted to examine the performance of SMAP under various evaluation criteria. Two real examples from genetic research studies motivated our work and are analysed by the proposed SMAP to produce new scientific findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series C: Applied Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.