Abstract
SummaryWe present a novel model averaging method to construct a prediction function in semi‐parametric form. The weighted sum of candidate semi‐parametric models is taken as a prediction of the mean response. Marginal non‐parametric regression models are approximated by spline basis functions and we apply a Bayesian Monte Carlo approach to fit such models. The optimal model weight parameters are estimated by minimising the least squares criterion with an explicit form. We implement our method in extensive simulation studies and illustrate its use with two real medical data examples. Our methods are demonstrated to be more accurate than both classical parametric model averaging methods and existing semi‐parametric regression models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Australian & New Zealand Journal of Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.