Abstract

Summary The main purpose of the paper is to improve research on school effectiveness by applying a new strategy for uncovering subpopulations of schools that differ in terms of distribution of student outcomes. We propose a semiparametric mixed effects model with an expectation–maximization algorithm to estimate its parameters and we apply it to the Italian Institute for the Educational Evaluation of Instruction and Training data of 2013–2014 as a tool for the identification of latent subpopulations of schools. The semiparametric assumption provides the random effects of the mixed effects model to be distributed according to a discrete distribution with an (a priori) unknown number of support points. This modelling induces an automatic clustering of schools (the higher level of hierarchy), where schools within the same cluster share the same random effects. The latent subpopulations of schools identified may then be exploited through the use of multinomial models that include school level features. The novelties introduced by this paper are twofold: first, the semiparametric expectation–maximization algorithm is an innovative method that could be used in many classification problems; second, its application to education data represents a new approach to study school effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.