Abstract
Double censoring often occurs in biomedical research, such as HIV/AIDS clinical trials, when an outcome of interest is subject to both left censoring and right censoring. It can also be seen as a mixture of exact and current status data and has long been investigated by several authors for theoretical and practical purposes. In this article, we propose the Buckley-James method for an accelerated failure time model under double random censoring. For the semiparametric inference, where the error distribution of the censored linear model is left unspecified, we develop an efficient EM-based self-consistency procedure to estimate the regression parameter and the unknown residual distribution function. Asymptotic properties, including the uniform consistency and weak convergence, are established for the proposed estimators. Simulation studies demonstrate that the proposed procedure works well under various censoring schemes and outperforms the inverse-probability weighting method in terms of accuracy and efficiency. The method is applied to the HIV/AIDS study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.