Abstract

Noncompliance and missing data often occur in randomized trials, which complicate the inference of causal effects. When both noncompliance and missing data are present, previous papers proposed moment and maximum likelihood estimators for binary and normally distributed continuous outcomes under the latent ignorable missing data mechanism. However, the latent ignorable missing data mechanism may be violated in practice, because the missing data mechanism may depend directly on the missing outcome itself. Under noncompliance and an outcome-dependent nonignorable missing data mechanism, previous studies showed the identifiability of complier average causal effect for discrete outcomes. In this article, we study the semiparametric identifiability and estimation of complier average causal effect in randomized clinical trials with both all-or-none noncompliance and outcome-dependent nonignorable missing continuous outcomes, and propose a two-step maximum likelihood estimator in order to eliminate the infinite dimensional nuisance parameter. Our method does not need to specify a parametric form for the missing data mechanism. We also evaluate the finite sample property of our method via extensive simulation studies and sensitivity analysis, with an application to a double-blinded psychiatric clinical trial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.