Abstract
In this article, we study a partially linear single-index model for longitudinal data under a general framework which includes both the sparse and dense longitudinal data cases. A semiparametric estimation method based on a combination of the local linear smoothing and generalized estimation equations (GEE) is introduced to estimate the two parameter vectors as well as the unknown link function. Under some mild conditions, we derive the asymptotic properties of the proposed parametric and nonparametric estimators in different scenarios, from which we find that the convergence rates and asymptotic variances of the proposed estimators for sparse longitudinal data would be substantially different from those for dense longitudinal data. We also discuss the estimation of the covariance (or weight) matrices involved in the semiparametric GEE method. Furthermore, we provide some numerical studies including Monte Carlo simulation and an empirical application to illustrate our methodology and theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.