Abstract
In this paper new semiparametric GARCH models with long memory are in- troduced. The estimation of the nonparametric scale function is carried out by an adapted version of the SEMIFAR algorithm (Beran et al., 2002). Recurring on the revised recommendations by the Basel Committee to measure market risk in the banks' trading books (Basel Committee on Banking Supervision, 2013), the semi- parametric GARCH models are applied to obtain rolling one-step ahead forecasts for the Value at Risk (VaR) and Expected Shortfall (ES) for market risk assets. In addition, standard regulatory traffic light tests (Basel Committee on Banking Supervision, 1996) and a newly introduced traffic light test for the ES are carried out for all models. The practical relevance of our proposal is demonstrated by a comparative study. Our results indicate that semiparametric long memory GARCH models are an attractive alternative to their conventional, parametric counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.