Abstract

Estimation of longitudinal data covariance structure poses significant challenges because the data usually are collected at irregular time points. A viable semiparametric model for covariance matrixes has been proposed that allows one to estimate the variance function nonparametrically and to estimate the correlation function parametrically by aggregating information from irregular and sparse data points within each subject. But the asymptotic properties of the quasi-maximum likelihood estimator (QMLE) of parameters in the covariance model are largely unknown. We address this problem in the context of more general models for the conditional mean function, including parametric, nonparametric, or semiparametric. We also consider the possibility of rough mean regression function and introduce the difference-based method to reduce biases in the context of varying-coefficient partially linear mean regression models. This provides a more robust estimator of the covariance function under a wider range of situations. Under some technical conditions, consistency and asymptotic normality are obtained for the QMLE of the parameters in the correlation function. Simulation studies and a real data example are used to illustrate the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.